Deep Learning: A Primer for Radiologists

Publication: Radiographics

Gabriel Chartrand, PhD, Phillip M. Cheng, MD, MS, Eugene Vorontsov, BASc Eng Sci, Michal Drozdzal, PhD, Simon Turcotte, MD, MSc, Christopher J. Pal, PhD, Samuel Kadoury, PhD, An Tang, MD, MSc.

Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data. With the advent of large datasets and increased computing power, these methods can produce models with exceptional performance. These models are multilayer artificial neural networks, loosely inspired by biologic neural systems. Weighted connections between nodes (neurons) in the network are iteratively adjusted based on example pairs of inputs and target outputs by back-propagating a corrective error signal through the network. For computer vision tasks, convolutional neural networks (CNNs) have proven to be effective. Recently, several clinical applications of CNNs have been proposed and studied in radiology for classification, detection, and segmentation tasks. This article reviews the key concepts of deep learning for clinical radiologists, discusses technical requirements, describes emerging applications in clinical radiology, and outlines limitations and future directions in this field. Radiologists should become familiar with the principles and potential applications of deep learning in medical imaging.

Related posts

Digital Technology Supercluster Announces Investment to Increase the Effectiveness of Precision Oncology

Digital Technology Supercluster Announces Investment to Increase the Effectiveness of Precision Oncology

Harnessing artificial intelligence to take the guesswork out of diagnosing cancer recurrence for millions of cancer survivors

Read more
How to Bring Biomarker Testing In-House for Cancer Targeted Treatment Selection

How to Bring Biomarker Testing In-House for Cancer Targeted Treatment Selection

Personalized cancer treatment via targeted therapies is two-to-three times more effective than standard chemotherapy for patients with advan

...
Read more
Imagia Cybernetics & Canexia Health Merge to Supercharge Precision Oncology Accessibility

Imagia Cybernetics & Canexia Health Merge to Supercharge Precision Oncology Accessibility

Imagia Cybernetics, an AI-healthcare company that accelerates oncology solutions generated from real world data, today announced its merger

...
Read more