Image Segmentation by Iterative Inference from Conditional Score Estimation.

Adriana Romero, Michal Drozdzal, Akram Erraqabi, Simon Jégou, Yoshua Bengio.

Inspired by the combination of feedforward and iterative computations in the virtual cortex, and taking advantage of the ability of denoising autoencoders to estimate the score of a joint distribution, we propose a novel approach to iterative inference for capturing and exploiting the complex joint distribution of output variables conditioned on some input variables. This approach is applied to image pixel-wise segmentation, with the estimated conditional score used to perform gradient ascent towards a mode of the estimated conditional distribution. This extends previous work on score estimation by denoising autoencoders to the case of a conditional distribution, with a novel use of a corrupted feedforward predictor replacing Gaussian corruption. An advantage of this approach over more classical ways to perform iterative inference for structured outputs, like conditional random fields (CRFs), is that it is not any more necessary to define an explicit energy function linking the output variables. To keep computations tractable, such energy function parametrizations are typically fairly constrained, involving only a few neighbors of each of the output variables in each clique. We experimentally find that the proposed iterative inference from conditional score estimation by conditional denoising autoencoders performs better than comparable models based on CRFs or those not using any explicit modeling of the conditional joint distribution of outputs.

Related posts

Digital Technology Supercluster Announces Investment to Increase the Effectiveness of Precision Oncology

Digital Technology Supercluster Announces Investment to Increase the Effectiveness of Precision Oncology

Harnessing artificial intelligence to take the guesswork out of diagnosing cancer recurrence for millions of cancer survivors

Read more
How to Bring Biomarker Testing In-House for Cancer Targeted Treatment Selection

How to Bring Biomarker Testing In-House for Cancer Targeted Treatment Selection

Personalized cancer treatment via targeted therapies is two-to-three times more effective than standard chemotherapy for patients with advan

...
Read more
Imagia Cybernetics & Canexia Health Merge to Supercharge Precision Oncology Accessibility

Imagia Cybernetics & Canexia Health Merge to Supercharge Precision Oncology Accessibility

Imagia Cybernetics, an AI-healthcare company that accelerates oncology solutions generated from real world data, today announced its merger

...
Read more