Implicit Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation

Jiang, Xiang, Qicheng Lao, Stan Matwin, and Mohammad Havaei. In International Conference on Machine Learning, pp. 4816-4827. PMLR, 2020.

We present an approach for unsupervised domain adaptation—with a strong focus on practical considerations of within-domain class imbalance and between-domain class distribution shift—from a class-conditioned domain alignment perspective. Current methods for class-conditioned domain alignment aim to explicitly minimize a loss function based on pseudo-label estimations of the target domain. However, these methods suffer from pseudo-label bias in the form of error accumulation. We propose a method that removes the need for explicit optimization of model parameters from pseudo-labels directly. Instead, we present a sampling-based implicit alignment approach, where the sample selection procedure is implicitly guided by the pseudo-labels. Theoretical analysis reveals the existence of a domain-discriminator shortcut in misaligned classes, which is addressed by the proposed implicit alignment approach to facilitate domain-adversarial learning. Empirical results and ablation studies confirm the effectiveness of the proposed approach, especially in the presence of within-domain class imbalance and between-domain class distribution shift.

Related posts

Digital Technology Supercluster Announces Investment to Increase the Effectiveness of Precision Oncology

Digital Technology Supercluster Announces Investment to Increase the Effectiveness of Precision Oncology

Harnessing artificial intelligence to take the guesswork out of diagnosing cancer recurrence for millions of cancer survivors

Read more
How to Bring Biomarker Testing In-House for Cancer Targeted Treatment Selection

How to Bring Biomarker Testing In-House for Cancer Targeted Treatment Selection

Personalized cancer treatment via targeted therapies is two-to-three times more effective than standard chemotherapy for patients with advan

...
Read more
Imagia Cybernetics & Canexia Health Merge to Supercharge Precision Oncology Accessibility

Imagia Cybernetics & Canexia Health Merge to Supercharge Precision Oncology Accessibility

Imagia Cybernetics, an AI-healthcare company that accelerates oncology solutions generated from real world data, today announced its merger

...
Read more